Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks
نویسندگان
چکیده
—One of the enduring puzzles to Stephen Jay Gould about life on Earth was the cause or causes of the fantastic diversity of animals that exploded in the fossil record starting around 530 Ma—the Cambrian explosion. In this contribution, we first review recent phylogenetic and molecular clock studies that estimate dates for high-level metazoan diversifications, in particular the origin of the major lineages of the bilaterally-symmetrical animals (Bilateria) including cnidarians. We next review possible ‘‘internal’’ triggers for the Cambrian explosion, and argue that pattern formation, those processes that delay the specification of cells and thereby allow for growth, was one major innovation that allowed for the evolution of distinct macroscopic body plans by the end of the Precambrian. Of potential ‘‘external’’ triggers there is no lack of candidates, including snowball earth episodes and a general increase in the oxygenation state of the world’s oceans; the former could affect animal evolution by a mass extinction followed by ecological recovery, whereas the latter could affect the evolution of benthic animals through the transfer of reduced carbon from the pelagos to the benthos via fecal pellets. We argue that the most likely cause of the Cambrian explosion was the evolution of macrophagy, which resulted in the evolution of larger body sizes and eventually skeletons in response to increased benthic predation pressures. Benthic predation pressures also resulted in the evolution of mesozooplankton, which irrevocably linked the pelagos with the benthos, effectively establishing the Phanerozoic ocean. Hence, we suggest that the Cambrian explosion was the inevitable outcome of the evolution of macrophagy near the end of the Marinoan glacial interval. Kevin J. Peterson* and Mark A. McPeek. Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755. E-mail: [email protected] David A. D. Evans. Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109 *Corresponding author Accepted: 4 August 2004 The Cambrian explosion ranks as such a definitive episode in the history of animals that we cannot possibly grasp the basic tale of our own kingdom until we achieve better resolution for both the antecedents and the unfolding of this cardinal geological moment. [Gould 1998]
منابع مشابه
The origin of animals: Can molecular clocks and the fossil record be reconciled?
The evolutionary emergence of animals is one of the most significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that animals originated and began diversifying over 100 million years before the first definitive metazoan fossil evidence in the Cambrian. However, closer inspection reveals that clock estimates and the fossil record are less...
متن کاملAnimal Evolution: Only Rocks Can Set the Clock
Molecular clocks have become the method of choice to date the tree of life. A new study demonstrates that there are limits to their precision, which may only be overcome by improving our knowledge of the fossil record.
متن کاملMesozoic basin inversion in Central Alborz, evidence from the evolution of Taleqan-Gajereh-Lar paleograben
This paper presents evidence on Mesozoic inversion of basin bounding faults within the Taleqan-Gajereh-Lar Paleograben (TGLP) in Central Alborz Range. For this purpose, well documented stratigraphy data across the TGLP together with the new acquired structural data on the geometry and kinematics of the paleograben basin bounding faults are utilized. The TGLP has evolved through the Early and Mi...
متن کاملHox Gene Clusters of Early Vertebrates: Do They Serve as Reliable Markers for Genome Evolution?
Hox genes, responsible for regional specification along the anteroposterior axis in embryogenesis, are found as clusters in most eumetazoan genomes sequenced to date. Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters, derived from the so-called tw...
متن کاملShort germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes
In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way...
متن کامل